Abstract

Biochemical reactions are typically slowed down by decreasing temperature. However, accelerated reaction kinetics have been observed for a long time. More recent examples have highlighted the unique role of freezing in fabricating supermaterials, degrading environmental contaminants, and accelerating bioreactions. Functional nucleic acids are DNA or RNA oligonucleotides with versatile properties, including target recognition, catalysis, and molecular co4mputing. In this review, we discuss the current observations and understanding of freezing-facilitated reactions involving functional nucleic acids. Molecular reactions such as ligation/conjugation, cleavage, and hybridization are discussed. Moreover, freezing-induced DNA-nanoparticle conjugations are introduced. Then, we describe our effect in immobilizing DNA on bulk surfaces. Finally, we address some critical questions and research opportunities in the field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.