Abstract

The freezing characteristics and development of cell tension during extracellular freezing were examined in supercooling stem tissues of riverbank grapes (Vitis riparia) and cold-hardened leaves of live oak (Quercus virginiana) and mountain cranberry (Vaccinium vitis-idaea). Dormant stem xylem and pith tissues of river-bank grapes were resistant to freeze-induced dehydration above the homogeneous nucleation temperature, and they developed cell tension reaching a maximum of 27 MPa. Similarly, extracellular freezing induced cell tension in the leaves of live oak and mountain cranberry. Maximum cell tension in the leaves of live oak was 16.8 MPa and 8.3 MPa in the leaves of mountain cranberry. Following peak tensions in the leaves, a decline in the pressure was observed with progressive freezing. The results suggest that resistance to cell deformation during extracellular freezing due to cell-wall rigidity can lead to reduced cell dehydration and increased cell tension. A relationship to predict freezing behavior in plant tissues based on cell rigidity is presented. Based on cell-water relations and ice nucleation rates, cell-wall rigidity has been shown to effect the freezing characteristics of plant tissues, including freeze-induced dehydration, supercooling, and homogeneous nucleation temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.