Abstract

Quantum coherence (QC) as a crucial physical resource plays the vital role in recent researches of quantum information science, whereas the QC within an open system unavoidably deteriorates due to the system–environment interacting. In this paper, we analyze the dynamics of QC when the initial state is exposed to Markovian and non-Markovian reservoirs, respectively. We analytically derive the dynamical conditions under which the QC is frozen in the Markovian reservoir and explore the underlying physical mechanisms by investigating the trade-off relation between QC and mixedness of system. In the non-Markovian reservoir, we demonstrate the damped revivals of QC and show that these revivals can be effectively enhanced by increasing the memory degree of reservoir. These findings might provide an insightful physical interpretation for the dynamical phenomena of QC exhibiting in complex systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call