Abstract

In two-dimensionally confined spaces such as nanopores or nanotubes, freezing and melting occurs differently from the bulk phase transition. While bulk materials are crystallized mainly via crystal growth, crystallization in nanopores is dominated by nucleation, and the growth of the crystal is restricted due to the imposed spatial constraint. Different crystallization mechanisms result in different crystal structures and physical properties. Under nanoscopic cylindrical confinement, the crystals are oriented to a certain favorable direction with nucleation being dominant, and the crystal orientation can shift upon the variation of dominant crystallization mechanism. The melting temperatures (T m) are also influenced by the reduced dimension of crystal and interfacial interaction between crystallizable components and their environment in nanopores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.