Abstract

Chloroplast thylakoid membranes were isolated from barley at room temperature under redox conditions which ensured that the light-harvesting complex was either non-phosphorylated or phosphorylated. The ultrastructural appearance of these membranes was characterised by rotary shadowed, freeze-fracture electron microscopy. Upon phosphorylation, there was a slight (5%) decrease in the extent of thylakoid stacking, as evidenced by an increase in EFu face particle density. It was concluded from detailed measurements of particle density and size distribution that phosphorylation of the light-harvesting complex results in the movement of some of the Photosystem II EFs particles and some of the PFs particles containing the light-harvesting complex from grana to stroma membranes. There was also a slight increase in PFs particle size and the appearance of a population of large particles on this face, which may be due to conformational changes in the light-harvesting complex or to the movement of some Photosystem I particles from stroma to grana membranes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call