Abstract

This study investigated platelet-rich plasma (PRP) and adipose stem cell-conditioned medium (ASC-CM) use as a strategy to accelerate tissue healing. Platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) were quantified in fresh and freeze-dried PRP and ASC-CM, and a stability test was performed in the freeze-dried samples (90 and 180 days of storage). A cell proliferation test was performed using equine mesenchymal stem cell culture in reconstituted PRP gel mesh after freeze-drying. In vivo PRP, ASC-CM applications, or their association were performed in induced wounds at 15 and 9-day intervals, according to the treatments: saline solution (control), PRP, ASC-CM, or ASC-CM+PRP. Horses were monitored through photographs and wound area measurements on days 5, 7, 15, and 24 after lesion induction. Skin biopsies were obtained on days 15 and 24 of the experiment. PDGF and VEGF quantification did not differ between fresh or freeze-dried treatments, was similar after freeze-drying or 90 days of storage, but showed a significant reduction after 180 days of storage. Comparing all treatments, no differences were observed in the histopathological analyses. For inflammation, fibroplasia, and collagen formation, only the time effect between the first and second biopsies was significant. The cell proliferation test revealed intense multiplication in the PRP gel mesh. Healing time was similar among all treatments. In conclusion, our results showed the possibility to produce and maintain freeze-dried PRP and ASC-CM for 90 days. Further studies are needed to better explore the in vivo therapeutic PRP and ASC-CM effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.