Abstract

The UV–visible and fluorescence excitation–emission matrix spectrophotometric properties of dissolved organic matter (DOM) were compared for the effects of both pH and freeze/thaw on a wide range of freshwater DOM samples from the United Kingdom. It was observed that the spectrophotometric properties of our freshwater samples were sensitive to pH and that the recorded change varies with fluorescence and absorbance intensity, DOC concentration and the wavelength observed. Large and variable responses to pH were particularly severe at extremes of pH, but within the natural levels typically observed in freshwaters the response to pH was limited. For the same sample set large and variable responses were observed when subjected to freeze/thaw. From our data, knowledge of the original properties cannot be used to determine the amount of change that will occur with freezing and subsequent thawing. It is therefore recommended that in future research, to maintain the natural signal of the DOM, analysis is conducted at natural pH and without freezing to facilitate ease of comparison between studies. Our results also have implications for studies that utilise spectrophotometric techniques to investigate long-term trends in dissolved organic carbon in rivers. Spectrophotometric parameters from upland derived samples show varied responses of samples to pH and there is clear potential to complicate trends in the interpretation of long-term water colour data if pH is changing over time in a system or if samples are treated with different storage protocols with respect to acidification and freezing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.