Abstract

Abstract Alumina ceramic materials with graded functional porosity were prepared by the freeze casting method and characterized. The effects of processing route parameters on the pore formation were studied. Pore characteristics were investigated concerning morphology and distribution in the ceramic matrix. The mercury intrusion method was used to evaluate the porosity. Mechanical properties, as well as the fracture mode, were investigated by the uniaxial compression test. Scanning electron microscopy was used to analyze and correlate the created interface between the layers with the mechanical response. The results suggested that the porosity obtained in all samples was similar, even with varying parameters (different suspension solidification configurations). When evaluating the mechanical behavior, these distinct parameters showed drastic differences in compressive strength and failure mode. This was due to the formation of interfaces between the layers of different porosities, according to the solidification configuration. The interfaces modified the fracture mode, changing from a longitudinal-directed to an interface-directed fracture. The pore microstructure and morphology indicated highly connected pore channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call