Abstract

The non-Newtonian fluid flow with a free surface occurring during a plane channel filling in the gravity field has been simulated numerically. The mathematical statement of the problem is formulated on the basis of the motion equations, continuity equation, and natural boundary conditions on the free surface with an application of the Herschel-Bulkley rheological model. A traditional mathematical model singularity on the three-phase contact line is eliminated using a slip condition. A numerical algorithm based on the finite-difference method is developed for solving the problem. Regularization of the rheological equation has been carried out using a shock-capturing method for the flow with unyielded regions. A parametric investigation of the flow kinematics and free surface behavior in terms of the governing parameters has been implemented. The flow structures distinguished by the presence of unyielded regions have been demonstrated depending on relation of the viscous, gravity, and plastic forces in the flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.