Abstract

Focused laser differential interferometry is used to quantify the free-stream density perturbations in the T5 reflected-shock tunnel. The investigation of reflected-shock tunnel disturbances is motivated by the study of hypervelocity boundary-layer instability and transition. Past work on hypersonic wind-tunnel noise is briefly reviewed. New results are reported for hypervelocity air flows at reservoir enthalpies between 5 and 18 MJ/kg at Mach ≈ 5.5. Statistical analysis finds no correlation of RMS density perturbations with tunnel run parameters (reservoir pressure, reservoir mass-specific enthalpy, free-stream unit Reynolds number, free-stream Mach number, and shot number). Spectrograms show that the free-stream disturbance level is constant throughout the test time. Power spectral density estimates of each of the experiments are found to collapse upon each other when the streamwise disturbance convection velocity is used to eliminate the time scale. Furthermore, the disturbance level depends strongly on wavelength. If the disturbance wavelength range of interest is between 700 μm and 10 mm, the tunnel noise is measured to be less than 0.5 % with the focused laser differential interferometer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.