Abstract

Molybdenum trioxide (MoO3) is known as a promising pseudocapacitive material, but low conductivity limits its applications. Hydrogenation is demonstrated to increase the conductivity of MoO3 and hence improve its electrochemical performance. Hydrogenated MoO3 (MoO3−x) shows enhanced conductivity based on, both first principle calculations and single nanobelt measurements. Freestanding MoO3−x/carbon nanotubes (CNT) composite films have been fabricated and showed much improved electrochemical performance compared to composites of CNT and as-synthesized MoO3 (MoO3/CNT). Electrodes showed a specific capacitance of 337F/g (based on the mass of MoO3−x) and a high volumetric capacitance of 291F/cm3 (based on the whole electrode) with excellent rate capability. Also we confirmed that the improved intercalation kinetics and the increased intercalation pseudocapacitance could be attributed to the higher electronic conductivity of MoO3−x, which results in better and faster intercalations of Li+ ions. This electrochemical behavior implies that MoO3−x can serve as a very good negative electrode with high capacitance at high mass loading levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.