Abstract

Vertically aligned metal halide perovskite (MHP) nanowires are promising for various optoelectronic applications, which can be further enhanced by heterostructures. However, present methods to obtain free-standing vertically aligned MHP nanowire arrays and heterostructures lack the scalability needed for applications. We use a low-temperature solution process to prepare free-standing vertically aligned green-emitting CsPbBr3 nanowires from anodized aluminum oxide templates. The length is controlled from 1 to 20 μm by the precursor amount. The nanowires are single-crystalline and exhibit excellent photoluminescence, clear light guiding and high photoconductivity with a responsivity of 1.9 A/W. We demonstrate blue-green heterostructured nanowire arrays by converting the free-standing part of the nanowires to CsPbCl1.1Br1.9 in an anion exchange process. Our results demonstrate a scalable, self-aligned, and lithography-free approach to achieve high quality free-standing MHP nanowires arrays and heterostructures, offering new possibilities for optoelectronic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call