Abstract
Mechanical forces modify the cell membrane potential by opening mechanosensitive ion channels. We report the design and construction of a lipid bilayer tensiometer to study channels that respond to lateral membrane tension, [Formula: see text] , in the range 0.2 to 1.4 [Formula: see text] (0.8 to 5.7 [Formula: see text] ). The instrument consists of a black-lipid-membrane bilayer, a custom-built microscope, and a high-resolution manometer. Values of [Formula: see text] are obtained from the determination of the bilayer curvature as a function of applied pressure by means of the Young-Laplace equation. We demonstrate that [Formula: see text] can be determined by calculating the bilayer radius of curvature from fluorescence microscopy imaging or from measurements of the bilayer's electrical capacitance, both yielding similar results. Using electrical capacitance, we show that the mechanosensitive potassium channel TRAAK responds to [Formula: see text] , not curvature. TRAAK channel open probability increases as [Formula: see text] is increased from 0.2 to 1.4 [Formula: see text] but open probability never reaches 0.5. Thus, TRAAK opens over a wide range of [Formula: see text] , but with a tension sensitivity about one-fifth that of the bacterial mechanosensitive channel MscL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.