Abstract

Lightweight and high-power LiNi0.5Mn1.5O4/carbon nanofiber (CNF) network electrodes are developed as a high-voltage cathode for lithium ion batteries. The LiNi0.5Mn1.5O4/CNF network electrodes are free-standing and can be used as a cathode without using any binder, carbon black, or metal current collector, and hence the total weight of the electrode is highly reduced while keeping the same areal loading of active materials. Compared with conventional electrodes, the LiNi0.5Mn1.5O4/CNF network electrodes can yield up to 55% reduction in total weight and 2.2 times enhancement in the weight percentage of active material in the whole electrode. Moreover, the LiNi0.5Mn1.5O4/carbon nanofiber (CNF) network electrodes showed excellent current rate capability in the large-current test up to 20C (1C = 140 mAh/g), when the conventional electrodes showed almost no capacity at the same condition. Further analysis of polarization resistance confirmed the favorable conductivity from the CNF network compared with the conventional electrode structure. By reducing the weight, increasing the working voltage, and improving the large-current rate capability simultaneously, the LiNi0.5Mn1.5O4/CNF electrode structure can highly enhance the energy/power density of lithium ion batteries and thus holds great potential to be used with ultrathin, ultralight electronic devices as well as electric vehicles and hybrid electric vehicles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call