Abstract
High-quality epitaxial growth of nanocomposite thin-films typically requires a high-temperature process on single-crystal oxide substrates, which limits their potential for flexible device integration. Here, we adopted a water-soluble Sr3Al2O6 (SAO) sacrificial buffer layer to achieve a La0.7Sr0.3MnO3 (LSMO):NiO freestanding nanocomposite thin film. Freestanding LSMO:NiO film has been transferred onto a flexible polymer substrate, and exhibits an exchange bias effect, and no film quality degradation has been observed after an extensive bending process. This study opens a route to fabricate high-quality freestanding nanocomposite thin films and lays a foundation towards the applications of these multifunctional nanocomposite thin films in flexible spintronic and electronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.