Abstract

To reach energy density demands greater than 3 mA h cm-2 for practical applications, the electrode structure of lithium-sulfur batteries must undergo an architectural redesign. Freestanding carbon nanofoam papers derived from resorcinol-formaldehyde aerogels provide a three-dimensional conductive mesoporous network while facilitating electrolyte transport. Vapor-phase sulfur infiltration fully penetrates >100 μm thick electrodes and conformally coats the carbon aerogel surface providing areal capacities up to 4.1 mA h cm-2 at sulfur loadings of 6.4 mg cm-2. Electrode performance can be optimized for energy density or power density by tuning sulfur loading, pore size, and electrode thickness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call