Abstract

The increasing popularity of both small and large private clouds and expanding public clouds poses new requirements to data center (DC) architectures. First, DC architectures should be incrementally scalable allowing the creation of DCs of arbitrary size with consistent performance characteristics. Second, initial DC deployments should be incrementally expandable supporting small-scale upgrades without decreasing operation efficiency. A DC architecture possessing both properties satisfies the requirement of free-scaling.Recent work in DC design focuses on traditional performance and scalability characteristics, therefore resulting in symmetric topologies whose upgradability is coarse-grained at best. In our earlier work we proposed Scafida, an asymmetric, scale-free network inspired DC topology which scales incrementally and has favorable structural characteristics. In this paper, we build on Scafida and propose a full-fledged DC architecture achieving free-scaling called FScafida. Our main contribution is threefold. First, we propose an organic expansion algorithm for FScafida; this combined with Scafida’s flexible original design results in a freely scalable architecture. Second, we introduce the Effective Source Routing mechanism that provides near-shortest paths, multi-path and multicast capability, and low signaling overhead by exploiting the benefits of the FScafida topology. Third, we show based on extensive simulations and a prototype implementation that FScafida is capable of handling the traffic patterns characteristic of both enterprise and cloud data centers, tolerates network equipment failures to a high degree, and allows for high bisection bandwidth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call