Abstract
Lipid oxidations initiated by free radicals are usually considered to undergo peroxidation, a chain process starting with hydrogen abstraction by an initiator, followed by O2 uptake. While this peroxidation mechanism is widely accepted and sometimes taken for granted, here we provide evidence of the oxidation of both of the unsaturated and saturated fatty acid chains in phospholipids initiated by photoinitiator 2,4,6-trimethylbenzoyl diphenylphosphine oxide (TMDPO) at the air-water interface, and no peroxidation products are observed in these reactions. A unique field-induced droplet ionization mass spectrometry (FIDI-MS) methodology which is capable of the selective online sampling of monolayers of molecules that reside at the air-water interface is employed to detect the products. We have shown that the double bonds on the oleyl chains of the lipids are first oxidized into epoxides, after which other saturated carbon atoms are oxidized into carbonyl groups. We anticipate that this work will draw more attention to the complexity of the lipid oxidation chemistry initiated by free radicals.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.