Abstract
AbstractGeneralizing a result of Yoshinaga in dimension three, we show that a central hyperplane arrangement in 4-space is free exactly if its restriction with multiplicities to a fixed hyperplane of the arrangement is free and its reduced characteristic polynomial equals the characteristic polynomial of this restriction. We show that the same statement holds true in any dimension when imposing certain tameness hypotheses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.