Abstract
Chain codes are the most size-efficient lossless compression methods for representing rasterised binary objects and contours. Satisfactory compression ratio, low processing cost and low storage requirements of the decoder make chain code technique interesting for storage and transmission of predefined graphical objects in embedded environments. Each element in the chain is encoded to show the relative angle difference between two adjacent pixels along the boundary of an object. The cost of binary bits representing the codes are considered to be equal. Yet, more efficient encoding is possible by considering and applying technique that treats the binary bits differently considering its requirement of storage space, energy consumption, speed of execution and etc. This paper considers cost of binary digits as unequal and proposes a new representation of the eight-direction Freeman chain code based on a variation of Huffman coding technique, which considers cost of bits as unequal. The evaluation and comparison of the cost efficiency between classical Freeman chain code and the new representation of the chain code is provided. Our experiments yield that the proposed representation of Freeman Chain code reduces overall storage/transmission cost of encoded objects considerably with compared to classical Freeman chain code.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.