Abstract

A method using a freeform surface lens for LED secondary optic design is proposed in this paper. By Snell's Law, the differential equations are given to build the relationship between the normal direction of a freeform surface and its input/output ray vectors. Runge-Kutta formulas are used to calculate the differential equations to design the freeform surface. Moreover, the optical model for uniform illumination is simulated and optical performance is analyzed. A practical freeform surface lens for LED uniform illumination is fabricated using an injection molding method. By the process, our system demonstrates a uniform illumination with a divergence half-angle of 6 degrees and an efficiency of 78.6%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.