Abstract

An efficient and modular numerical prediction model is developed to predict vibration and re-radiated noise in adjacent buildings from excitation due to metro trains in tunnels for both newly built and existing situations. The three-dimensional dynamic tunnel–soil interaction problem is solved with a subdomain formulation, using a finite element formulation for the tunnel and a boundary element method for the soil. The periodicity of the tunnel and the soil in the longitudinal direction is exploited using the Floquet transform, limiting the discretization effort to a single bounded reference cell. It is demonstrated in the paper how the boundary element method can efficiently be extended to deal with periodic media, reusing the available three-dimensional Green's tensors for layered media. The efficiency of the method is demonstrated with a numerical example, where the case of harmonic and transient point loading on the invert of a shallow cut-and-cover masonry tunnel in Paris is considered. The work described here was carried out under the auspices of the CONVURT project sponsored by the European Community.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call