Abstract

The recently proposed neo-classical theory for nematic elastomers generalizes standard molecular–statistical Gaussian network theory to allow for anisotropic distributions of polymer chains. The resulting free-energy density models several of the novel properties of nematic elastomers. In particular, it predicts the ability of nematic elastomers to undergo large deformations with exactly zero force and energy cost—so called soft elasticity. Although some nematic elastomers have been shown to undergo deformations with unusually small applied forces, not all do so, and none deform with zero force. Further, as a zero force corresponds to infinitely many possible deformations in the neo-classical theory, this non-uniqueness leads to serious indeterminacies in numerical schemes. Here we suggest that the neo-classical free-energy density is incomplete and propose an alternative derivation that resolves these difficulties. In our approach, we use the molecular–statistical theory to identify appropriate variables. This yields the choice for the microstructural degrees of freedom as well as two independent strain tensors (the overall macroscopic strain plus a relative strain that indicates how the deformation of the elastomeric microstructure deviates from the macroscopic deformation). We then propose expressions for the free-energy density as a function of the three quantities and show how the material parameters can be measured by two simple tests. The neo-classical free-energy density can be viewed as a special case of our expressions in which the free-energy density is independent of the overall macroscopic strain, thus supporting our view that the neo-classical theory is incomplete.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.