Abstract

A beam-scanning terahertz (THz) radiation mechanism in a free-electron-driven grating system is proposed for THz applications. By loading a period-asynchronous rod array above the grating, the spoof surface plasmon (SSP) originally excited by the electron changes its radiation characteristics owing to the rod-induced Brillouin zone folding effect. The rod array functions as an antenna and converts the SSP into a spatial coherent THz radiation. The radiation frequency and direction can be precisely controlled by the electron energy. The field intensity of the radiation is increased approximately 20 times compared with that of the conventional Smith-Purcell radiation in the same frequency range. In addition, a microwave-band scaling prototype is fabricated and the frequency-controlled radiation is measured. Excellent agreement between the experimental and simulated results is obtained. This study paves the way for the development of on-chip THz sources for advanced communication and detection applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.