Abstract

PurposeTo determine whether the pulmonary MR imaging with free-breathing radial 3D fat-suppressed T1-weighted gradient echo (r-VIBE) sequence can detect lung lesions and display lesion profiles with an accuracy comparable to that of computed tomography (CT), which is the reference standard in this study.PopulationSixty-three consecutive patients were prospectively enrolled between October, 2016 and March, 2017. All the patients received both 3T MRI scanning with a free-breathing r-VIBE sequence and chest standard CT. Morphologic features of lesions were evaluated by two radiologists with a 5-point system. Chest standard CT were used as reference standard. Weighted kappa analysis and chi-squared test were used to determine both inter-observer agreement and inter-method agreement.ResultsA total of 210 solid pulmonary nodules or masses and 1 ground-glass nodule were detected by CT. Compared to CT, r-VIBE correctly detected 95.7% of pulmonary nodules, including 100% of detection rate with diameter greater than 6 mm, 92.3% of pulmonary nodules with diameter between 4 and 6 mm, and 83.3% of pulmonary nodules with diameter less than 4 mm The inter-method agreements between r-VIBE and standard-dose CT were either “substantial” or “excellent” in the evaluation of following features of pulmonary nodules with diameter more than 10mm: including lobulation, spiculation, convergence of vessels, bubble-like attenuation, cavitation and mediastinal lymph node enlargement (0.605≤K≤1.000; P<0.0001). However, K values for inter-method agreements were significant but “moderate” or “poor” for evaluating pleural tag, halo, and calcification (0.355≤ K≤0.451; P<0.0001).ConclusionThe use of pulmonary MR imaging with r-VIBE showed high detection rate of pulmonary nodules and inter-method agreement with CT. It is also useful for nodule morphologic assessment.

Highlights

  • Magnetic Resonance Imaging (MRI) of lung is more and more accepted as a valuable additional imaging modality for chest [1,2,3,4]

  • A total of 210 solid pulmonary nodules or masses and 1 ground-glass nodule were detected by computed tomography (CT)

  • After obtaining images with standard-dose CT and rVIBE (MRI) sequence, we evaluated them on the same

Read more

Summary

Introduction

Magnetic Resonance Imaging (MRI) of lung is more and more accepted as a valuable additional imaging modality for chest [1,2,3,4]. T2 weighted half-fourier single-shot turbo spin echo (T2-HASTE) sequence can be used to visualize pathological changes [7]; T1 weighted 3D gradient recall echo (T1W-GRE) is best to assess pulmonary nodules and mediastinal disease with breath hold [8]; ultrashort echo time (UTE) imaging is acceptable for pulmonary nodules detected [9]. For pulmonary solid nodules with a diameter of 5–8 mm, detection rates of pulmonary. MRI have been between 60 and 90% in most clinical studies. For lesions with a diameter of 8 mm or more, clinical detection rates have been close to 100% [10,11,12,13,14].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call