Abstract

The dielectric constant of fluorinated polymides, their blends, and composites is known to decrease with the increase in free volume due to a decrease in the number of polarizable groups per unit volume. Herein, we report an interesting finding on the origin of dielectric constant in a polymer blend prepared using a fluorine-containing polymer and a polyimide probed in terms of its available free volume, which is distinct from the generally observed behavior in fluorinated polyimides. For this study, a blend of poly(vinylidene fluoride-co-hexafluoro propylene) and poly(ether imide) was chosen and the interaction between them was studied using FTIR, XRD, TGA, and SEM. The blend was investigated by positron annihilation lifetime spectroscopy (PALS), Doppler broadening (DB), and dielectric analysis (DEA). With the increase in the free volume content in the blend, surprisingly, the dielectric constant also increases and is attributed to additional space available for the polarizable groups to orient themselves to the applied electric field. The results obtained would pave the way for more effective design of polymeric electrical charge storage devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.