Abstract

An approximate solution for the free vibration problem of two-dimensional magneto-electro-elastic laminates is presented to determine their fundamental behavior. The laminates are composed of linear homogeneous elastic, piezoelectric, or magnetostrictive layers with perfect bonding between each interface. The solution for the elastic displacements, electric potential, and magnetic potential is obtained by combining a discrete layer approach with the Ritz method. The model developed here is not dependent on specific boundary conditions, and it is presented as an alternative to the exact or analytical approaches which are limited to a very specific set of edge conditions. The natural frequencies and through-thickness modal behavior are computed for simply supported and cantilever laminates. Solutions for the simply supported case are compared with the known exact solution for piezoelectric laminates, and excellent agreement is obtained. The present approach is also validated by comparing the natural frequencies of a two-layer cantilever plate with known analytical solution and with results obtained using commercial finite element software.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.