Abstract
Free vibration of layered circular cylindrical shells of variable thickness is studied using spline function approximation by applying a point collocation method. The shell is made up of uniform layers of isotropic or specially orthotropic materials. The equations of motions in longitudinal, circumferential and transverse displacement components, are derived using extension of Love's first approximation theory. The coupled differential equations are solved using Bickley-type splines of suitable order, which are cubic and quintic, by applying the point collocation method. This results in the generalized eigenvalue problem by combining the suitable boundary conditions. The effect of frequency parameters and the corresponding mode shapes of vibration are studied with different thickness variation coefficients, and other parameters. The thickness variations are assumed to be linear, exponential, and sinusoidal along the axial direction. The results are given graphically and comparisons are made with those results obtained using finite element method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.