Abstract
AbstractThe purpose of this content is to investigate the free vibration of functionally graded parabolic and circular panels with general boundary conditions by using the Fourier-Ritz method. The first-order shear deformation theory is adopted to consider the effects of the transverse shear and rotary inertia of the panel structures. The functionally graded panel structures consist of ceramic and metal which are assumed to vary continuously through the thickness according to the power-law distribution, and two types of power-law distributions are considered for the ceramic volume fraction. The improved Fourier series method is applied to construct the new admissible function of the panels to surmount the weakness of the relevant discontinuities with the original displacement and its derivatives at the boundaries while using the traditional Fourier series method. The boundary spring technique is adopted to simulate the general boundary condition. The unknown coefficients appearing in the admissible function are determined by using the Ritz procedure based on the energy functional of the panels. The numerical results show the present method has good convergence, reliability and accuracy. Some new results for functionally graded parabolic and circular panels with different material distributions and boundary conditions are provided, which may serve as benchmark solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.