Abstract
In this work, a non-local finite-element formulation is developed to analyse free vibration of functionally graded (FG) nanobeams considering power-law variation of material through thickness of the nanobeam. The Euler–Bernoulli beam theory based on Eringen's non-local elasticity theory with one length scale parameter is used to model the FG nanobeam. To this end, two types of FG nanobeams composed of two different materials are analysed by using the developed non-local finite-element formulation. First FG nanobeam is made of alumina (Al2O3) and steel, whereas second one is composed of silicon carbide (SiC) and stainless steel (SUS304). Numerical results are presented to show the effect of power-law exponent (k) and nanostructural length scale (e 0 a/L) on the free vibration of FG nanobeams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.