Abstract

In this article, nonlinear free vibration of embedded double-walled carbon nanotubes (DWCNTs) duo to the nonlinear interlayer van der Waals (vdW) force is studied based on the nonlocal Euler–Bernoulli beam theory. The interlayer vdW force is modeled as a nonlinear function of inner and outer tubes deflections considering the variation of the interlayer distance along the circumference of DWCNTs. The harmonic balance method is applied to analyze the relationship between the deflection amplitudes and the frequencies of in-phase and out-of-phase free vibrations for DWCNTs. Finally, the influences of the nonlocal parameter, surrounding elastic medium, nanotube length, end condition and vibrational mode on the nonlinear free vibration properties of DWCNTs are discussed in detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.