Abstract

An elastic helicoidal structure modelled as a plate twisted around its axis is studied in this paper. Accurate strain–displacement relationships for the shell are derived by the Green strain tensor in general shell theory and first-order shear deformation theory. An energy equilibrium equation of free vibration is introduced by the principle of virtual work. Applying the Rayleigh–Ritz method, an analytical eigenvalue equation is formulated and solved via an efficient computational approach for vibration characteristics of the helicoidal structure. A set of normalized orthogonal polynomials generated by the Gram–Schmidt procedure is presented to approximate the admissible functions. The first polynomial is taken as a kinematically compliant geometric equation of boundary conditions of the shell. The convergence and the accuracy of the present method, and the effects of geometric parameters and boundary conditions on vibration of the helicoidal structure are investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.