Abstract
A semi-analytical finite element analysis is presented for determining the natural frequencies of thin circular isotropic cylindrical shells with variable thickness. Love's first approximation shell theory is used to solve the problem. The effect of thickness distribution on natural frequencies was determined for two boundary conditions; viz., simply supported-simply supported and clamped-clamped with different length to radius ratios. The thickness distribution was assumed to be linear and quadratic along the axial direction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.