Abstract

Based on shear-deformable beam theory, free vibration of thin-walled composite Timoshenko beams with arbitrary layups under a constant axial force is presented. This model accounts for all the structural coupling coming from material anisotropy. Governing equations for flexural-torsional-shearing coupled vibrations are derived from Hamilton’s principle. The resulting coupling is referred to as sixfold coupled vibrations. A displacement-based one-dimensional finite element model is developed to solve the problem. Numerical results are obtained for thin-walled composite beams to investigate the effects of shear deformation, axial force, fiber angle, modulus ratio on the natural frequencies, corresponding vibration mode shapes and load–frequency interaction curves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.