Abstract

In this paper, the effect of different boundary conditions on the free vibration analysis response of a sandwich plate is presented using the higher order shear deformation theory. The face sheets are orthotropic laminated composites that follow the first order shear deformation theory (FSDT) based on the Rissners-Mindlin (RM) kinematics field. The motion equations are derived considering the continuity boundary conditions between the layers based on the energy method and Hamilton's principle. The frequency and mode shapes of the structure are obtained using the differential quadrature method (DQM). The effects of different parameters such as the face sheet-to-core stiffness ratio, the boundary conditions, and the core-to-face sheet thickness ratio on the frequency of the sandwich plate are shown. Moreover, the numerical results indicate that the frequency of the CCCC and CFFF sandwich plates predict the higher and lower frequency, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.