Abstract

An algorithm is presented to analyze the free vibration in a system composed of a cable with discrete elements, e.g., a concentrated mass, a translational spring, and a harmonic oscillator. The vibrations in the cable are modeled and analyzed with the Lagrange multiplier formalism. Some fragments of the investigated structure are modeled with continuously distributed parameters, while the other fragments of the structure are modeled with discrete elements. In this case, the linear model of a cable with a small sag serves as a continuous model, while the elements, e.g., a translational spring, a concentrated mass, and a harmonic oscillator, serve as the discrete elements. The method is based on the analytical solutions in relation to the constituent elements, which, when once derived, can be used to formulate the equations describing various complex systems compatible with an actual structure. The numerical analysis shows that, the method proposed in this paper can be successfully used to select the optimal parameters of a system composed of a cable with discrete elements, e.g., to detune the frequency resonance of some structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.