Abstract

In this paper, free vibration of a circular plate composed of a transversely isotropic functionally graded piezoelectric material (FGPM) placed in a uniform magnetic field is investigated. Material properties are assumed to depend on the thickness of the circular plate and they are expressed as the same exponential function of h. The problem of free vibration for the transversely isotropic FGPM circular plate with clamped and simply supported boundary conditions is solved by means of the state space method. Numerical examples and some useful discussions are given to demonstrate the significant influence of material inhomogeneity, and adopting a certain value of the graded index can optimize structures of the circular plate. This will be of particular importance in modern engineering design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.