Abstract

The purpose of this research is to analyse the free vibration of composite laminated conical shells based on higher order shear deformation theory. The vibrational behavior of multi-layered conical shells are analyzed for simply supported end condition. The coupled differential equations in terms displacement and rotational functions are obtained. These displacement and rotational functions are invariantly approximated using cubic and quantic spline. A generalized eigenvalue problem is obtained and solved numerically for an eigenfrequency parameter and an associated eigenvector of spline coefficients. The different materials are used to show the parametric effects of shell’s length ratio, cone angle, stacking sequence and number of lamina on the frequency of the conical shells. The numerical results obtained using spline approximation are validated through existing literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.