Abstract
The static deflection and free vibration problem of functionally graded porous (FGP) cylindrical micro/nanoshells are analyzed using the concept of the modified couple stress theory. The governing equations of first order shear deformation theory (FSDT) are employed and solved by generalized differential quadrature (GDQ) solution method. Using the power low for the FG properties, and incorporating pore content effect, a modified power function is considered for modelling FGP material properties. The transverse deflection under transverse loading and free vibration are numerically presented for a cylindrical micro/nanoshell with simply and clamped edges. The influences of porosity type, porosity volume fraction, material properties, size scale parameter, and type of the boundary conditions on the static bending and free vibration of FGP micro/nanoshells are investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.