Abstract

PurposeThe purpose of this paper is to carry out free vibration and buckling analysis of functionally graded material (FGM) plate.Design/methodology/approachEquilibrium and stability equations of FGM rectangular plate under different boundary conditions are derived using finite element method-based inverse trigonometric shear deformation theory (ITSDT). Eight-noded rectangular plate element with seven degrees of freedom at each node is used for the present analysis. The power-law distribution method has been considered for the continuously graded variation in composition of the ceramic and metal phases across the thickness of a functionally graded plate.FindingsThe finite element formulation incorporated with ITSDT and provisions of the constitutive model of FGM plate has been implemented in a numerical code to obtain the natural frequency and critical buckling load under uniaxial and biaxial compressive load. The influence of material gradation, volume fraction index, span to thickness ratio and boundary constraints over free vibration and buckling response has been studied.Originality/valueDevelopment and validation of finite element methodology using ITSDT to predict the structural response of the FGM plates under different loading, geometric and boundary conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call