Abstract

In this study, free vibration and buckling behaviors of a functionally graded nanoplate supported by the Winkler–Pasternak foundation using a nonlocal classical plate theory are investigated. Eringen’s nonlocal differential model has been used for considering the small-scale effect. The properties of the functionally graded nanoplate are considered to vary transversely following the power law. The governing vibration and buckling equations of an elastically supported functionally graded nanoplate have been derived using the principle of virtual work, and the solution is obtained using the Rayleigh–Ritz method and characteristic polynomials. The advantage of this method is that it disposes of all the drawbacks regarding edge constraints. The objective of the article is to see the effect of edge constraints, aspect ratios, material property exponent, nonlocal parameter, and foundation parameters on the nondimensionalized frequency and the buckling load of an embedded functionally graded nanoplate in a thermal environment. The study highlights that the nonlocal effect is pronounced for higher modes and/or higher aspect ratios and need to be considered for the analysis of the nanoplate. Further, it is observed that the effect of the Pasternak foundation is prominent on nondimensionalized frequencies and buckling of the functionally graded nanoplate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.