Abstract

A novel method for the spatial discretization of two-dimensional domains is derived and applied to the problem of free vibrations of singly curved shells. This new method utilizes a tensor product of two independent families of lines to discretize the geometry and kinematics of a surface. The first family consists of NURBS functions which are implemented in agreement with the isogeometric approach. The second family of lines is a carefully selected series which satisfies boundary conditions a priori. The present hybrid formulation unifies spatial discretization schemes of the semi-analytical Finite strip method and the Isogeometric analysis. The obtained method inherits many features of both of the underlying techniques, e.g., high continuity in both directions, decoupling of the governing equations, and exact initial geometry. Thorough numerical analysis shows that this novel method is well-suited for the efficient and accurate free vibration analysis of singly curved thin shells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.