Abstract

A theoretical study on free vibration behavior of pre-stressed functionally graded material (FGM) beam is carried out. Power law variation of volume fraction along the thickness direction is considered. Geometric non-linearity is incorporated through von Kármán non-linear strain–displacement relationship. The governing equation for the static problem is obtained using minimum potential energy principle. The dynamic problem for the pre-stressed beam is formulated as an eigenvalue problem using Hamilton's principle. Three classical boundary conditions with immovable ends are considered for the present work, namely clamped–clamped, simply supported–simply supported and clamped–simply supported. Four different FGM beams, namely Stainless Steel–Silicon Nitride, Stainless Steel–Zirconia, Stainless Steel–Alumina and Titanium alloy–Zirconia, are considered for generation of results. Numerical results for non-dimensional frequency parameters of undeformed beam are presented. The results are presented in non-dimensional pressure-displacement plane for the static problem and in non-dimensional frequency-displacement plane for the dynamic problem. Comparative frequency-displacement plots are presented for different FGMs and also for different volume fraction indices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call