Abstract

In the present paper, free vibration of a thin open curved shell with parabolic curvature was studied. This shell has a curvature with variable radius in one direction. The equations of motion of this shell were inferred by first order shell theory. According to perpendicular nature of loading on shell of marine structures, the assumptions of Donnell–Mushtari–Vlasov can be used with an acceptable level of accuracy and the in-plane displacement along shell straight direction “x” can be neglected as compared to the displacement in two other directions. The natural frequencies and mode shapes related to the first five vibrational modes were extracted using semi-analytical methods including power series method, Galerkin method and beam function method. The results of the semi-analytical methods were validated against those obtained by using the finite element method. Out of the studied semi-analytical methods, Galerkin method was found to have an appropriate convergence in both natural frequency and mode shape. Adopting eight terms of the response series, Galerkin method has an appropriate convergence compared with the results of finite element.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call