Abstract

Plates are applied to a wide array of structural applications of varying complexity. Each application requires rigorous analysis to determine the viability of the proposed model. One such application involves modeling a larger structure as a collection of smaller flat plates connected at the plate boundaries. Previous research into these types of structures has led to varying levels of accuracy. It has been dependent on the applications and assumptions involved. To improve the accuracy of these types of structures in a more general context, we propose expanding on current models of coupled plates by modeling the plates using Mindlin plate theory. We analyze the vibration of the improved model with general elastic boundary conditions, point supports and coupling conditions using the Fourier series method and finite element software. When the Fourier series method is applied directly, continuity issues arise at the plate coupling boundaries. To resolve these issues, the Fourier series solution of the vibration displacements is amended to include auxiliary functions. This improved coupled plate model is analyzed and numerically simulated for a variety of elastic boundary conditions and coupling conditions. The numerical results are produced using the Fourier series method and a finite element solution to demonstrate the validity of the improved coupled plate model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call