Abstract
The main objective of the present work is to give the systematic way for derivation of Kirchhoff plate-elastic foundation interaction by mixed-type formulation using the Gâteaux differential instead of well-known variational principles of Hellinger–Reissner and Hu–Washizu. Foundation is a Pasternak foundation, and as a special case if shear layer is neglected, it converges to Winkler foundation in the formulation. Uniform variation of the thickness of the plate is also included into the mixed finite element formulation of the plate element PLTVE4 which is an isoparametric C0 class conforming element discretization. In the dynamic analysis, the problem reduces to solution of the standard eigenvalue problem and the mixed element is based upon a consistent mass matrix formulation. The element has four nodes and at each node transverse displacement two bending and one torsional moment is the basic unknowns. Proper geometric and dynamic boundary conditions corresponding to the plate and the foundation is given by the functional. Performance of the element for bending and free vibration analysis is verified with a good accuracy on the numerical examples and analytical solutions present in the literature. © 1997 by John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.