Abstract

This paper presents free vibration analysis of functionally graded (FG) size-dependent nanobeams using finite element method. The size-dependent FG nanobeam is investigated on the basis of the nonlocal continuum model. The nonlocal elastic behavior is described by the differential constitutive model of Eringen, which enables the present model to become effective in the analysis and design of nanosensors and nanoactuators. The material properties of FG nanobeams are assumed to vary through the thickness according to a power law. The nanobeam is modeled according to Euler–Bernoulli beam theory and its equations of motion are derived using Hamilton’s principle. The finite element method is used to discretize the model and obtain a numerical approximation of the equation of motion. The model is validated by comparing the obtained results with benchmark results. Numerical results are presented to show the significance of the material distribution profile, nonlocal effect, and boundary conditions on the dynamic characteristics of nanobeams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.