Abstract

In this research work, based on the Euler–Bernoulli theory and by means of Generalized Differential Quadrature (GDQ) method, free vibration characteristics of functionally graded (FG) beams resting on two-parameter foundation are focused. The two-constituent functionally graded beam consists of ceramic and metal grading through the thickness. A generalized power-law distribution is considered for the ceramic volume fraction. A detailed parametric study is carried out to highlight the influences of different profiles of fiber volume fraction, four parameters of power-law distribution and two-parameter elastic foundation modulus on the vibration characteristics of the FG beams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.