Abstract
An asymptotic approach using the Eringen nonlocal elasticity theory and multiple time scale method is developed for the three-dimensional (3D) free vibration analysis of simply-supported, single-layered nanoplates and graphene sheets (GSs) embedded in an elastic medium. In the formulation, the small length scale effect is first introduced to the nonlocal constitutive equations by using a nonlocal parameter, then the mathematical processes of nondimensionalization, asymptotic expansion and successive integration are performed, and finally recurrent sets of motion equations for various order problems are obtained. The interactions between the nanoplates (or GSs) and their surrounding medium are modeled as a two-parameter Pasternak foundation. Nonlocal classical plate theory (CPT) is derived as a first-order approximation of the 3D nonlocal elasticity theory, and the motion equations for higher-order problems retain the same differential operators as those of nonlocal CPT, although with different nonhomogeneous terms. Some 3D nonlocal elasticity solutions of the natural frequency parameters of nanoplates (or GSs) with and without being embedded in the elastic medium and their corresponding through-thickness distributions of modal field variables are given to demonstrate the performance of the 3D asymptotic nonlocal elasticity theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.