Abstract
The present study aims at the investigation of free vibration analysis of thin cylindrical shells surrounded by an elastic medium, which is distributed over a particular length of the shell. The Love’s shell theory is utilized along with the Winkler foundation to obtain the governing equations of motion. An exact series expansion method of solution is employed for any arbitrary boundary conditions. The excellent accuracy of the obtained results is validated by comparing to the available literature. Moreover, several case studies are performed to provide an insight into the influence of some practically important parameters on free vibrations of circular cylindrical shells, including stiffness and length of the partial foundation. Finally, it is concluded that the proposed method can accurately determine the exact solution to the free vibration of shells partially surrounded by elastic foundations with any boundary conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.